НЕЙРОПРОТЕКТОРНОЕ ЛЕЧЕНИЕ ГЛАУКОМНОЙ ОПТИЧЕСКОЙ НЕЙРОПАТИИ

Бахритдинова Ф.А., Ибрагимова С.М., Кафедра глазных болезней Ташкентской Медицинской Академии Ташкент, Узбекистан

Глаукома является одной из наиболее тяжелых форм офтальмопатологии, которая занимает лидирующее место среди причин слепоты и слабовидения. Согласно литературным данным, более 8,4 млн. человек ослепли на оба глаза из-за первичной глаукомы в 2010 году, по прогнозам их количество возрастет до 11,1 млн. к 2020 году. Предыдущие оценки на основе исследований распространенности слепоты предположили, что 12% от количества слепых в мире потеряли зрение из-за глаукомы. Однако только половина знает об этом диагнозе, и еще меньший процент больных получает адекватное лечение.

Столь угрожающая статистика свидетельствует об объективных трудностях, связанных как с диагностикой, так и с лечением данного заболевания. В последние годы наблюдается значительный прогресс в сфере изучения механизмов поражения органа зрения при глаукоме на молекулярном уровне. В связи с этим появилась потребность в пересмотре определения глаукомы. Согласно современным представлениям, глаукома-это хронически прогрессирующая оптическая нейропатия, сопровождаемая характерными морфологическими изменениями в слое нервных волокон и ганглиозных клеток сетчатки, а также в головке зрительного нерва.

Патогенетические теории глаукомной оптической нейропатии (ГОН). В настоящее время наиболее распространенными являются три основные теории глаукомной оптической нейропатии (ГОН): механическая, сосудистая и метаболическая. Согласно механической теории, пусковым фактором является повышение внутриглазного давления (ВГД), которое приводит к прогибу решетчатой пластинки и повреждению аксонов ганглионарных клеток сетчатки, уменьшает или блокирует ретроградный транспорт эфирных нейротрофических факторов, таких как мозговой нейротрофический фактор (BDNF), NGF, нейротрофин NT-3, NT-4 и NT-5, глиальных клеток нейротрофического фактора, мерцательного нейротрофического фактора и FGF-2.

Сосудистая теория объясняет возникновение ГОН вследствие снижения кровотока в головке зрительного нерва (ГЗН). Главная причина плохого кровоснабжения ГЗН — нарушение сосудистой регуляции, которое вызывает снижение перфузии глаза и нарушение местной саморегуляции, что ведет к повышенной чувствительности зрительного нерва, к колебанию уровня ВГД. Ишемия ганглионарных клеток сетчатки (ГКС) может уменьшить количество необходимых питательных веществ и субстратов, доступных для производства энергии в метаболически высокоактивных нейронах Механические и сосудистые факторы, суммируясь, активируют ряд метаболических процессов, приводящих к апоптозу.

Так выраженное цитотоксическое действие на сетчатку и зрительный нерв оказывают чрезмерные уровни глутамата, повышенная концентрация которого вызывает приток ионов кальция через гиперактивацию рецепторов *N-метил-D* -аспартата (NMDA), что называется эксайтотоксичностью Когда клетки подвергаются апоптозу, внутриклеточный глутамат высвобождается из умирающей клетки и рассеивается между соседними клетками, вызывая вторичную дегенерацию и запуск каскада событий, ведущих к дальнейшей гибели клеток

В последнее время широко используется термин окислительный стресс, под которым понимают избыточное образование активных форм кислорода, источником которого

является митохондриальный синтез. Предполагается, что активные формы кислорода, наряду с оксидом азота, могут привести к апоптозу ГКС и зрительного нерва

Особое внимание в апоптозе ГКС при ГОН уделяется так называемым неправильно свернутым белкам, как амилоид β (А β), которые являются характерной особенностью многих нейродегенеративных заболеваний, например, как болезнь Альцгеймера. Наряду с амилоидом β в развитии апоптоза ГКС следует выделить белки теплового шока (HSP). Антитела против Hsp27 были обнаружены у пациентов с глаукомой. Пока неясно, существуют ли эти аутоантитела в результате повреждения ГКС или в результате имитации Т-клеточно-опосредованного ответа на повреждение ГКС. Разработка антигенов-ловушек или вакцин может быть полезным направлением для нейропротекции при глаукоме.

Учитывая вешеизложенные сложные механизмы в патогенезе ГОН необходимы мероприятия, направленные на предотвращение каскада реакций, которые приводят к поражению и гибели нейронов, так называемая нейропротекция. Идея лечения глаукомы с нейропротекторной целью берет начало с 1990-х годов: Вайнреб и Левин в «Архивы офтальмологии» пришли к выводу, что нейропротекция должна стать по крайней мере дополнительной терапией. На сегодняшний день, учитывая прогресс в изучении патогенеза ГОН, нейропротекция является основной задачей, в связи с чем современная нейропротекторная терапия должна быть направлена не только на сохранение структуры, но и функции нейронов, тем самым сохраняя биохимические и биофизические передачи нервного импульса.

Данная статья посвящена широкому выбору групп препаратов и методов лечения, обладающих нейропротекторным действием при ГОН

Группы препаратов, используемые при ГОН

Антагонисты рецепторов глутамата NMDA рецепторы. Мемантин, является блокатором NMDA рецепторов который утвержден в США для лечения деменции, связанной с болезнью Альцгеймера. Хотя мемантин клинически продемонстрировали защитный эффект на приматах, но он не был изучен при длительном лечении (> 5 месяцев).

В ходе исследования выяснилось, что прогрессирование ГОН у больных, получавших большие дозы мемантина, было ниже, чем у пациентов, лечившимися меньшими дозами, однако достоверных отличий с группой пациентов, получавших плацебо не получено (Курышева).

Другой группой препаратов, обладающей способностью контролировать уровень внутриклеточного кальция путем блокирования NMDA рецепторов, является третье поколение агонистов альфа2 адренорецепторов (бримонидин). Нейропротекторный эффект 0.15% раствора бримонидина/пурита был подтвержден результатами компьютерной периметрии сетчатки, а также результатами ОСТ, свидетельствующими о стабильности ганглиозных клеток сетчатки и слоя нервных волокон. Другие исследователи получили сведения о том, что 0.2% бримонал способен улучшать реографические показатели, данный факт связан с особенностями фармакодинамики и стимуляцией деятельности нервных клеток, тормозит развитие ГОН и апоптоз ганглиозных клеток сетчатки и зрительного нерва. У больных, принимавших данныйпрепарат повышается чувствительность и лабильность зрительного анализатора и стабилизируется течение глаукомного процесса, что способствует значительному улучшению качества жизни

Бета блокаторы. Препараты этой группы уже давно используются в офтальмологической практике в качестве гипотензивного препарата при глаукоме, однако наличие у некоторых препаратов (бетаксолол) свойств блокирования кальциевых каналов

позволяет использовать их и в качестве нейропротекторов. Известно, что избыточное количество ионов кальция приводит к негативным последствиям, исходом которых является гибель клетки. Как показывают результаты многочисленных экспериментов, бетаксолол блокируя проникновение кальция в нервную клетку, препятствует ее разрушению в условиях гипоксии. Более того, бетаксолол эффективно устраняет условия усугубляющие явления гипоксии, такие как вазоконстрикция, нарушение реологических свойств крови и отек тканей.

Согласно долгосрочным исследованиям применение бетаксолола проводит к сохранению и повышению средней чувствительности сетчатки. Помимо вышеуказанного эффекта исследователи обнаружили, что применение бетаксолола оказывает положительное влияние на кровоток в области зрительного нерва на 24,15%.

Аналоги простагландинов. С давних времен данная группа средств составляет авангард в линии препаратов для снижения внутриглазного давления. Однако, латанопрост и биматопрост продемонстрировали свое нейропротективное действие на ГКС, подвергнутых гипоксии Данное действие не связано ни с ВГД, ни с его снижением при использовании данного препарата В то же время, латанопрост может вызвать ингибирование ЦОГ-2 по принципу обратной связи, что приводит к нейропротекции. Существует также предположение, что данный препарат может оказывать антиапоптотический эффект через ингибирование каспазы-3.

Нейропептиды. Данная группа препаратов снижает интенсивность свободнорадикального окисления, осуществляя антиоксидантное действие на нервную ткань, что в свою очередь обусловливает их нейропротекторное и противоапоптозное действие При проведении исследований свойств нейропептида Кортексина наблюдалось повышение функциональной активности фоторецепторов и биполярных клеток, с одновременным усилением межнейрональных и глионейрональных связей на уровне фоторецепторов/клеток Мюллера, что клинически проявлялось повышением остроты зрения, расширением границ поля зрения и уменьшением скотом. Согласно исследованиям наиболее эффективным и безопасным является введение препарата путем эндоназального электрофореза, обеспечивающее длительную стабилизацию зрительных функций при глаукоме. Результаты исследования рекомендуются к использованию в клинической практике

Ретиналамин был синтезирован в 1985 г. и представляет собой полипептидный комплекс из сетчатки глаза крупного рогатого скота. Синтезированный полипептидный комплекс оказывал стимулирующий эффект на сетчатку глаза, проникая через гематоофтальмический барьер. С 2005 года проводился анализ нейропротекторного эффекта данного препарата у больных ПОУГ и ВМД сухой формы, которые являются заболеваниями с наиболее высокой степенью инвалидизации Исследователями была установлена эффективность на всех стадиях ПОУГ при проведении курсов лечения 2 раза в год, и достижение продолжительного и постоянного эффекта после его применения. Что подтвердилось при изучении сканирующей конфокальной ретинотомограммы, на которой четко наблюдалось увеличение средней толщины ретинальных нервных волокон у больных с начальной и развитой формой ПОУГ.

Ноотропные препараты наряду с остальными демонстрируют отличные результаты. В частности, путем экспериментальной оценки было установлено, что применение фенотропила повышает уровень эндогенных антиоксидантов: супероксиддисмутазы, каталазы, витамина Е и С, а также установлена антиапоптозная активность препарата фенотропил, который на 16,6% замедлял длительность развития апоптоза в сравнении с контрольной группой. Что в свою очередь улучшило показатели периметрии и повысило чувствительность сетчатки у 75% больных нестабилизированной

ПОУГ, не влияя на уровень внутриглазного давления, гидродинамику и остроту зрения. Положительный эффект у больных увеличивался на протяжении следующего месяца после приема фенотропила и достаточно устойчиво сохранялся в последующие полгода в среднем в 64,5% случаев, что доказывает эффективность применения фенотропила как непрямого ненйропротектора. Согласно другим исследованиям было предложено нейропротекторное лечение с включением препаратов: фенотропил, милдронат и бетаксолол. Результаты данного исследования свидетельствуют о повышении остроты зрения на всех этапах мониторинга, расширение полей зрения в 53,4% случаев, а также уменьшением экскавации ДЗН и увеличением объема нервных волокон зрительного нерва в 63,5% случаев.

Еще одним представителем препаратов данной группы является цитиколин, проявивший себя как эффективный нейропротектор в дозах 500 и 1000 мг/сутки в течение 10 дней, способствуя улучшению качества проводимой терапии, что подтверждается улучшение функциональных показателей. Более стойкий эффект отмечен на начальной и развитой стадиях ПОУГ. Результаты лечения на далекозашедшей стадии оказались менее выражены и имели тенденцию к возвращению к исходным показателям. Наилучшие результаты отмечены при применении дозы цитиколина 1000 мг/сутки. При анализе данных периметрии у пациентов, получавших цитиколин в дозе 1000 мг/сутки в течение 10 дней, спустя 3 месяца отмечено повышение светочувствительности сетчатки и снижение дефекта, которые сохраняются до 6 месяцев после проведённой терапии.

сочетании С синусотрабекулэктомией продемонстрировал Цераксон положительные результаты. В основной группе были достигнуты значимое увеличение толщины перипапиллярного слоя нервных волокон сетчатки, светочувствительности и индекса MD. Данная положительная динамика наблюдалась в течении 6 месяцев. Однако иногда пациенты с далеко зашедшей стадией показывали хороший результат в то время, как больные с развитой стадией демонстрировали только стабилизацию. Необходимо дальнейшее изучение данного препарата и индивидуальный подбор доз и продолжительности лечения. Пациентов, плохо отвечающих на терапию цераксоном следует лечить другими нейропротекторами как прямого, так и непрямого действия.

Антиоксиданты. Одним из представителей данной группы является Рексод, выделенная из рекомбинантной супероксиддисмутазы (СОД). Согласно проведенным исследованиям, результаты использования данного препарата привели к нормализации гидродинамические и метаболические процессы, предотвращает патоморфологические изменения зрительного нерва.

Холиномиметик центрального действия. В механизмах развития ГОН много общего с заболеваниями ЦНС дегенеративного характера, например, с болезнью Альцгеймера, а также с хронической ишемией головного мозга. Поэтому все чаще обсуждается возможность применения в лечении ГОН препаратов (например, холина альфосцерата), успешно используемых в неврологии. Существуют множество препаратов основное вещество которых является холин альфосцерат — медотилин, глеацер, глиатилин, делецит, липоид, церепро, церетон.

Несмотря на такой широкий арсенал нейпротективных препаратов, направленных на лечение ГОН, до сих пор не существует единого алгоритма ведения данной патологии, а также препарата, который в полной мере обеспечивал долгосрочную стабилизацию зрительных функций глаза.

В настоящее время на кафедре глазных болезней II клиники ТМА проводится исследование ноотропного препарата, холиномиметика центрального действия, на примере Медотилина (холина альфосцерат)- предшественник ацетилхолина и

фосфатидилхолина. В организме человека холина альфосцерат расщепляется на холин и глицерофосфат. Холин участвует в биосинтезе ацетилхолина в головном мозге, который является основным нейромедиатором, улучшая передачу нервных импульсов. Действие ацетилхолина препятствует разрушительным адренергическим, глутаматическим реакциям в ответ на любое повреждение нервной ткани, осуществляя тем самым свое нейропротективное свойство. Второе нейропротекторное действие медотилина связано с другим его компонентом глицерофосфатом. Глицерофосфат является предшественником фосфатидилхолина, который поддерживает пластичность нейрональных мембран, обеспечивая функционирование рецепторов, тем самым облегчая синаптическую передачу. Кроме того, медотилин улучшает метаболические процессы в ЦНС, улучшает церебральный кровоток, активирует структуры ретикулярной формации головного мозга, в связи с чем получил широкое применение в неврологии.

В нашем клиническом исследовании для достижения большей стабилизации ГОН в лечение мы добавили витаминный комплекс Беневрон В, который обладает нейротрофическим, регенеративным и нейромоделирующим действием. В состав этого комбинированного препарата входят В1, В2, В6, В12. В связи с чем представлял особый интерес определить сочетанную эффективность препаратов Медотилин и Беневрон Б, обладающие нейропротекторной активностью при лечении ГОН.

В проводимом исследовании приняли участие 60 пациентов (88 глаз) глаукоматозной оптической нейропатией в условиях компенсации внутриглазного давления, в возрасте от 42 до 77 лет. В зависимости от проводимого лечения были сформированы три группы пациентов. 1 - контрольная: пациенты получали традиционную терапию - Sol. Mildronati 10%-5,0 в/в, Tab. Nootropili 800 мг х 3 раза, Sol. Pyridoxini hydrohloridi 5%-2,0 в/м, п/б - Sol. Emoxypini 1%-0,5, 2 группа — пациенты получали традиционную терапию, но Tab. Nootropili был заменен на Sol. Medotilini 1000 мг-4 мл. 3 группа – пациенты в отличии от 2 группы получали вместо витамина В6 применялся комплекс Sol. Benevroni B 4,0 мл в/м, курс лечения 10 дней. Группы были однородны по возрасту, ПО полу стадиям глаукомы. Пациенты общеофтальмологическими методами, до лечения, через 10 дней, 1 и 3 месяца после лечения.

В ходе проводимого лечения, нами были получены хорошие результаты. Исходная острота зрения (ОЗ) и суммарная граница периферического поля зрения (СГППЗ) пациентов во всех группах незначительно отличается и составили - 0,59 \pm 0,11 и 438,2 \pm 3,8 0 , соответственно. В динамике у пациентов I группы с ГОН к 3 месяцу наблюдения острота зрения улучшилась, превышая в 1,11 раза исходные значения и составило 0,66 \pm 0,10, показатели СГППЗ увеличились до 458,2 \pm 4,2 0 , что на 20 0 больше от исходного уровня. Во 2-группе острота зрения в динамике у пациентов с ГОН в 1,18 раза превышает исходное значение и составляет 0,70 \pm 0,08, СГППЗ расширилось на 32 0 и составило 470,2 \pm 5,1 0 . В 3-группе острота зрения в процессе лечения в 1,32 раза превышает исходное - 0,78 \pm 0,11, СГППЗ на 45 0 больше исходного показателя, достигая 483,2 \pm 6,1 0 .

Таким образом результаты наших исследований свидетельствуют о том, что использование препаратов Медотилин обладает активным действием, однако в сочетании с Беневроном Б способствует стабилизации и восстановлению нейронов зрительного нерва.

Заключение

В настоящее время лечение ГОН представляет особый интерес во всем мире. Следует отметить, что эффективность лечения будет зависеть от понимания современных

механизмов патогенеза ГОН, возможности воздействия на процессы их прогрессирования. В связи с чем все более перспективным становится нейропротекторное направление в лечении ГОН.